Comparison of Different Segmentation Algorithms for Dermoscopic Images
نویسندگان
چکیده
This paper compares different algorithms for the segmentation of skin lesions in dermoscopic images. The basic segmentation algorithms compared are Thresholding techniques (Global and Adaptive), Region based techniques (K-means, Fuzzy C means, Expectation Maximization and Statistical Region Merging), Contour models (Active Contour Model and Chan Vese Model) and Spectral Clustering. Accuracy, sensitivity, specificity, Border error, Hammoude distance, Hausdorff distance, MSE, PSNR and elapsed time metrices were used to evaluate various segmentation techniques.
منابع مشابه
A A HASEENA THASNEEM et al.: COMPARISON OF DIFFERENT SEGMENTATION ALGORITHMS FOR DERMOSCOPIC IMAGES
This paper compares different algorithms for the segmentation of skin lesions in dermoscopic images. The basic segmentation algorithms compared are Thresholding techniques (Global and Adaptive), Region based techniques (K-means, Fuzzy C means, Expectation Maximization and Statistical Region Merging), Contour models (Active Contour Model and Chan Vese Model) and Spectral Clustering. Accuracy, se...
متن کاملA Review of Segmentation Techniques on Melanoma Detection
In the current scenario focal point is on the development of CAD (Computer Aided Diagnosis) for dermoscopic images. In this paper, different kinds of segmentation algorithms are analyzed for automatic segmentation of skin lesions in dermoscopic images being evaluated. Among the implemented segmentation algorithms, border detection algorithm has achieved a better performance, when compared to ot...
متن کاملA Wide Spread of Algorithms for Automatic Segmentation of Dermoscopic Images
Currently, there is a great interest in the development of computer-aided diagnosis (CAD) systems for dermoscopic images. The segmentation step is one of the most important ones, since its accuracy determines the eventual success or failure of a CAD system. In this paper, different kinds of algorithms for the automatic segmentation of skin lesions in dermoscopic images were implemented and eval...
متن کاملA New Algorithm for Skin Lesion Border Detection in Dermoscopy Images
Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کامل